Узнайте о снижении цены

Оставьте ваш email и мы напишем вам когда цена снизится

Data Scientist

Вы получите знания в концентрированном формате в сфере Data Science с обратной связью от экспертов-практиков ведущих компаний.
210 567 ₽
126 341 ₽
стоимость обучения
3509 ₽
за месяц обучения
% Беспроцентная рассрочка на 36 мес.
Добавить в избранное
Узнать о снижении цены
Уровень сложности
для новичков
Длительность
13 мес.
Демо доступ
нет
Формат обучения
онлайн
Домашние задания
да
Обратная связь
да, от преподавателя
Документ по окончании
сертификат

Программа обучения

  • Основное
  • Содержание программы

Курс рекомендуется новичкам, разработчикам и аналитикам. Учат работать с SQL, использовать Python и библиотеки, проверять данные и определять проблемы, строить модели машинного обучения. Также вы освоите необходимый математический аппарат для продуктивной работы с моделями данных, машинным обучением и нейронными сетями. В качестве дипломного проекта вы создадите свою модель машинного обучения в сопровождении ментора. Курс проходит в формате вебинаров, также будут очные лекции в Москве.

SQL и получение данных

В идеальном мире data scientist получает готовые данные, чтобы строить модели, но мир неидеален. Вы научитесь с помощью SQL получать данные из БД, фильтровать, агрегировать, а также импортировать и экспортировать.

  • Архитектура и структура баз данных (БД)
  • Простые запросы, join`ы, агрегаты
  • Базовые команды в SQL и встроеные аналитические функции
  • Импорт и экспорт данных посредством SQL и ETL программ
  • Принципы работы с разными конкретными БД
  • Основные библиотеки для подключения к БД из Python
  • Функции SQL и их аналоги в pandas
  • Подготовка и сдача итогового проекта
Python, статистика и математика для анализа данных

Вы научитесь пользоваться базовыми инструментами и подходами в Python, чтобы начать работать с данными. Повторите основы линейной алгебры, теории множеств, методов математической оптимизации, описательной статистики, статистического анализа данных, а также научитесь реализовывать это на языке Python.

  • Основы Python и Git (арифметика)
  • Базовые типы данных и циклы
  • Функции и классы
  • Продвинутые типы данных: массивы, множества, словари
  • Python для анализа данных: numpy и scipy
  • Python для анализа данных: pandas
  • Лабораторная работа по Python
  • Основы линейной алгебры и теории множеств + реализация в Python
  • Методы математической оптимизации + реализация в Python
  • Основы описательной статистики + реализация в Python
  • Статистический анализ данных + реализация в Python
  • Лабораторная работа по матстатистике
  • Подготовка и сдача итогового проекта
Feature engineering и предобработка данных

Когда данные получены, нужно изучить их, выявить закономерности, а также подготовить для создания модели. Вы научитесь визуализировать данные, проверять их на целостность, валидность, полноту, очищать от шумов, пропущенных значений, работать с размерностью, а также создавать фичи для моделей.

  • Выбор способа визуализации под задачу
  • Инструменты matplotlib, seaborn для визуализации
  • Проверка и очищение данных с помощью pandas и numpy
  • Проведение одномерного и рекурсивного Feature Selection и Feature Selection на базе моделей
  • Методы оценки значимости и отбора признаков и их использование
  • «Проклятие размерности», основные алгоритмы и принципы их работы
  • Использование алгоритмов sklearn
Математика для анализа данных

Чтобы увидеть в больших объёмах данных закономерности, аналитик опирается на линейную алгебру, математический анализ и теорию вероятности. Если специалист не разбирается в этих направлениях — гипотезы и выводы будут неточными.

  • Линейная алгебра
  • Математический анализ
  • Теория вероятности
Построение модели

Вы научитесь строить основные модели обучения с учителем и без, а также ансамбли моделей. Кроме этого, сможете подбирать метрики, чтобы оценивать качество модели, итерационно повышать его и бороться с переобучением.

  • Линейные методы, логистическая регрессия и SVM
  • Деревья решений
  • Линейная и полиноминальная регрессия
  • Алгоритмы кластеризации
  • Способы повышения качества модели
  • Функции потерь и оптимизация
  • Оценка точности модели, борьба с переобучением, регуляризация
  • Улучшение качества модели
Менеджмент data-проектов

Вы научитесь планировать разработку data science-проектов, а также грамотно рассказывать заказчикам о результатах исследований.

  • Организация проекта
  • Составление отчётов по исследованиям
Рекомендательные системы

В этом и следующих блоках вы будете применять полученные знания в разных областях машинного обучения. Во время этого блока научитесь строить персонализированные и неперсонализированные рекомендательные системы, а также комбинировать их.

  • Неперсонализированные рекомендательные системы
  • Сontent-based-рекомендации
  • Collaborative Filtering
  • Гибридные алгоритмы

 

Распознавание изображений, машинное зрение

Вы освоите основные техники машинного зрения — извлечение признаков, поиск по картинкам, сегментирование, детекция объектов — а также научитесь строить нейросети.

  • Поиск по картинкам
  • Сегментация изображений, детекция объектов
  • Применение свёрточных нейронных сетей для задач сегментации и детекции
  • Применение рекуррентных сетей в задачах обработки изображений
  • Генеративные конкурирующие сети (GAN)
Обработка естественного языка (NLP)

Вы освоите морфологический и синтаксический анализ, дистрибутивную семантику и информационный поиск, научитесь снижать размерность в векторной модели, классифицировать, извлекать информацию и генерировать тексты.

  • Морфологический и синтаксический анализ
  • Методы снижения размерности в векторной модели. Информационный поиск
  • Тематическое моделирование (LSA, LDA, HDP)
  • Дистрибутивная семантика (word2vec, GloVe, AdaGram)
  • Счётные языковые модели и вероятностные языковые модели. LSTM. Машинный перевод
  • Генерация текстов (Natural Language Generation)
  • Задача классификации в АОТ
Итоговый хакатон

Завершим обучение состязанием с товарищами по курсу: в составе мини-команды, за ограниченное время и на основе датасетов крупных игроков рынка, вам придётся решать задачи по прогнозированию продаж или оптимизации производства, задействуя все знания и навыки, полученные на курсе.

Интеграция и использование machine learning решений в бизнесе, как правило, подразумевает командную игру, поэтому хакатон полезен ещё и как тренировка необходимых soft skills.

Дипломный проект

В рамках дипломного проекта вы сможете построить ML-модель для решения своих текущих профессиональных задач: это может быть система прогнозирования продаж, распознавание объектов на фото или видео, анализ временных рядов, анализ больших объёмов текста и т. д.

Если в моменте у вас нет идей для своего проекта (или доступа к необходимым данным), мы предложим вам учебный кейс в интересной вам области на основе реального датасета других компаний.

Дипломная работа выполняется самостоятельно под руководством экспертов курса и позволяет закрепить весь спектр знаний и навыков, полученных на программе.

Чему научат

Работать SQL
Использовать Python и библиотеки
Проверять данные и определять проблемы
Строить модели машинного обучения
Применять математику
Лидировать DS-проект

Преимущества курса

Больше 10 кейсов в портфолио
Помощь в трудоустройстве
Гарантия возврата денег, если передумаете учиться в течение 3 занятий

Отзывы пользователей

Оставить отзыв о курсе

    Оставьте отзыв о курсе

    Ваш адрес e-mail не будет опуликован
    Ваша оценка:
    Ваш отзыв:
    Достоинства:
    Недостатки:
    Имя:
    Email: